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Estimation of vegetation canopy leaf area index and fraction
of absorbed photosynthetically active radiation
from atmosphere-corrected MISR data

Y. Knyazikhin} J. V. Martonchik D. J. Dinef R. B. Myneni- M. Verstraeté,
B. Pinty? and N. Gobroh

Abstract. The multiangle imaging spectroradiometer (MISR) instrument is designed to
provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral
bands. This paper describes an algorithm for the retrieval of leaf area index (LAI) and
fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from
atmospherically corrected MISR data. The proposed algorithm is designed to utilize all the
information provided by this instrument, using a two-step process. The first step involves a
comparison of the retrieved spectral hemispherically integrated reflectances with those
determined from the model which depend on biome type, canopy structure, and
soil/understory reflectances. The biome/canopy/soil/understory models that pass this
comparison test are subject to the second step, which is a comparison of their directional
reflectances at the MISR angles to the retrieved spectral directional reflectances. This
procedure, however, can produce multiple acceptable solutions. The measure theory is used to
specify the most probable values of LAl and FPAR using the set of all acceptable solutions.
Optimization of the retrieval technique for efficient global processing is discussed. This paper
is the second of a two-part set describing a synergistic algorithm for producing global LA
and FPAR fields from canopy reflectance data provided by the MODIS (moderate resolution
imaging spectroradiometer) and MISR instruments.

1. Introduction absent. The removal of the effects of diffuse radiance from
e mutiange magng specioradameter ISR, o IO SIEE e e o ¢ Dol o e pectond
instrument onboard the EOS-AM1 platform, will make global

. ) . retrieved BRF and DHR model dependent. The accuracy of
observations of the Earth's surface at 1.1 km spatial resolutl%n . .
. o S . these variables is lower than that for the HDRF and BHR
with the objective of determining the atmosphericall

corrected reflectance properties of most of the land surfaﬁgcause they include uncertainties in BRDF models.

and the tropical ocearD[ner et. al, 1998a;Martonchick et gt\;\éivi;atrgittsrizti?ntr;? \t/r:s(:bla?n SE; ?r:il EZPU(:Z ecl)I:O\évasn;or
al.,, 1998]. Two types of atmospherically correctec? g 9 Py

S o reflectances because it does not depend on atmospheric
bidirectional canopy reflectances and their integrated values " . . L
. . L . . _conditions, i.e., the BRFs have more intrinsic canopy

will be available from this instrument. The hemispherical . . . .
formation. Therefore a technique for the interpretation of

directional reflectance factor (HDRF) and bihemisphericI .
. 3 ese data must account for these features of retrieved canopy
reflectance (BHR) characterize surface reflectance under

ambient sky conditions, i.e., direct and diffuse iIIuminationreﬂeCtanceS' The aim of this paper is to derive an algorithm

. . for the retrieval of leaf area index (LAI) and fraction of
The HDRF and BHR are independent of the kind of canop otosynthetically active radiation absorbed by vegetation

radiation model used and are shown to be highly accur Ll
S S AR) from canopy reflectances satisfying these
when correct atmospheric information is us@ingr et al, .
requirements.

1998a,Martonchik et al. 1998]. The bidirectional reflectance The measure theory is used to establish relationships

factor (BRF) and directional hemispherical reflectance (DHFQetween the surface reflectances, uncertainties in their

are defined for the special case when the atmOSphereré?rieval, and canopy structure. This technique is a powerful

o way to relate values one quantifies (e.g., probabilities,

ZJD(;DSE)mSgti gri (E:t?g::t%?y’ ggﬁ]fgrfr‘“l;r}'r:/gtsdt% (':"f%l_sesfﬁgglzensweights, mass, volume, area, etc.) to the information one
California. P ¥ 9 measures. Directly or indirectly, most modern approaches use
3Space Application Institute of the EC Joint Research Centermeasures. Therefore we use this technique to make the
Italy. algorithm flexible, i.e, to incorporate various approaches
within one algorithm. The measure theory starts with a
description of spaces of all possible situations encountered in
Paper number 98JD02461. reality and which are taken into account by the retrieval

0148-0227/98/98JD-02461$09.00 technique. Therefore the second section begins with a
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dEscrlptl[(.)n of fthe spaces fIoftcanopy real|zalt||ons irrl]d Al(Ql,QO) r/\z(QLQO) rA3(leQO) r/\A(Ql,QO)
observations of canopy reflectances, as well as the

establishment of relationships between these spaces aT(d!o)=ErAl(Q:2'QO) rAZ(Q:Z'QO) rA3(Q:2’QO) rA“(Q;Z'QO)D,
uncertainties in measured canopy reflectances. The proposed g ' ) ' ' o
algorithm aims to retrieve the most probable values of LAl HA1(99’QO) N, (Q9,Q0) 1, (Q0,Q) r/\4(Q9’QO)H
and FPAR using these relationships. Numerical examples )
demonstrate the retrieval capability of this approach. In

section 3, we analyze the case when canopy reflectances afem(q ) :[Aj\’lem(Q o) A;Tfm(Q 0) A}'Em(Q o) Aj\’fm(Q ol
only slightly sensitive to the canopy realizations and how this

situation can be quantified. Some basic information on (2)

measure theory is presented in the Appendix. The algorit}wére)\ —446 NMA=558 NMA=672 nm. and.=866 nm are
1— WA\2— WA3™ ' 4=

interacts only with elements of the spaces of cano )
. y . P Qxe centers of the MISR spectral ban@s;i=1, 2, ... , 9 are
realizations and observations of canopy reflectances. These

i i 1 1 nem
spaces are static element of the algorithm, i.e., look-up taﬁ;@(lgv;ev{;/ntgr;ign(igv)etcoto(;;\(l)\:g Vﬂ:‘(')' duengQégﬁ)(; AAref(Ig(St)a’nces
termed the CART (canopy architecture radiative transfer) file \;"%’ 0 by

r ‘A hem v A he
in the MISR Algorithm Theoretical Basis DocumeBirjer et and r "(Q’QO)’ A (o), T (Q), and A™1Q) to denote
al., 1998b]. This provides the independence of the algorith%wbserve1t|0nS of these variables.
N ' The modeled canopy reflectances depend on the model

from a particular canopy radiation model. A question then . .
arameters. In our algorithm we use a vegetation land cover

arises as to how the CART file has to be filled in. IP2rameter . . . .
cfssmcatlon parameterized in terms of variables used in

answering this question, we aimed (1) to minimize the size 0 . . .
9 4 ' (1) oton transport theorMyneni et al, 1997]. It distinguishes

the CART file and (2) to minimize the dependence of thi 10 . .
. . - Six biome types, each representing a pattern of the architecture

CART file on a particular canopy radiation model. These Lo . .
. . . ._of ;.an individual tree (leaf normal orientation; stem-trunk-

problems are discussed in sections 4 through 8. Evaluation of . ) .
. . ) . . ranch area fractions; leaf and crown size) and the entire
FPAR is presented in section 9. Section 10 summarizes the

flow of the MISR LAI/FPAR algorithm. canopy (trunk distribution, topography), as well as patterns of

An Algorithm Theoretical Basis Document (ATBD) for spectrql reflectance and transmittance of vegetathn .elements.
The soil and/or understory type are also characteristics of the

the MISR surface retrieval algorithm is available aE). . . o .
. . . . . _biome which can vary continuously within given biome-
http://www-misr.jpl.nasa.gov and includes implementation

details of the LAI/FPAR retrieval technique. This pape([jependent ranges. The distribution Of Ieayeg 'S .descnbe(.j by
. . ... _the three-dimensional leaf area density distribution function
presents a theoretical exposition of the LAI/FPAR algorithm . )
that will be implemented at launch which can also depend on some continuous parameters
' (section 5). Therefore LAl may not be in the lsbf model
parameters directly. However, LAl can be obtained when

2. Description of LAI Retrieval model parameter values in the parameteplate known; that

Let r,(Q.Q0) and APM(Q,) be the atmospherically is, LAl is a function ofp: LAI=I(p). The functionl is assumed
corrected hemispherical directional reflectance factor (HDREpOWN. Thus the model parameter [istontains one discrete
and bihemispherical reflectance (BHR). We follow the/ariable (biome type) which can take on six values only,
definitions given byDiner et al.[1998a], which are also used continuous variables (the soil and/or understory type), and
in section 4. Note that both of these variables depend on §®me continuous parameters determining the leaf area density
wavelengthA and the directior, of direct solar radiance, distribution function. A detailed description of canopy
soil reflectance properties, and incident (direct and diffus@prameterization is presentedHyyazikhin et althis issue].
radiance. The HDRF also depends on view direcfbnin The model parameters are said to be a canopy realization if
order to quantify a proportion between the direct and th@lues of model variables in the parameter list are specified.
diffuse components of the incoming radiation, we use th&€ denote byP a set of all possible canopy realizations and
ratio fy of direct radiation to the total (direct and diffuse)Vill usep to denote a canopy realization. The Beés the sum
radiation incident on the canopy.fif=1, the HDRF and BHR ©f six subsets,
become the bidirectional reflectance factor (BRF) and 6
directional hemispherical reflectance (DHR), respectively. p= Upbio ,

Therefore the symbolg,(Q,Qo) and AF™(Q,) will denote, bio<l

depending on the value &f, the HDRF and BHR or the BRF

and DHR. For each pixel the MISR instrument provides tHeach representing a biome specific set of canopy realizations.
atmospherically corrected HDRF, BHR, BRF, and DHR it D,0R™ andD,CR’ be the space of all possible values of
nine view directions and at four spectral bardmér et al, ~canopy reflectances obtained by runningver the seP; that
1998a]. This information is the input to our LAI/FPAR!'S:

;g::lne\gl algorithm which we express in the vector matr|>1DA :{Ahem(Qo, p): pOP } D, ={F(Qo,p): pOP}. (3)
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Here we proceed with the suggestion that the Bgtand D, Qa(L,On;Ryio) :{ pOR,,:I(p) <L andAhem(Qo) OO, }
represent all possible observations of canopy reflectances; that

is, any A™"MQ,) and T (Qo) are elements oD, and D, Q (L0 Ryo) ={ PORy, :1(p) <L andf(Q,) 0O, }.
respectively. It should be noted, however, that this suggestion )
may be violated in real situations. These sets are subsetsRgf, and contain such from Py, for

In reality any model can simulate a process to within Which the leaf area index LAIgp) is less than a given valle

certain degree of accuracy only. Also, measurements canﬂ'&ﬂ‘ the interval [LAkin(bio), LAIma(bio)] and () U,
be carried out ideally. It means that the models predict "(Qo)T10,. Here

domainsOA[ID, and O,00D, around A™MQ.) and F (Qo) to LAI i (bio) =inf{ I1(p): pORy, } .

which the “true values” belong. The same is valid for

measured quantities; that is, we can only point out LAl ax (bio) :sur{ [(p): pO PRy }
neighborhoodsO, and O, around A™"Q) and T (Qo) to .
which the “true values” belong. The domai@s and O, are The setSa(LAI maxOn;Phio) andQ (LAl 1axOr;Prio) contain

uncertainties in measurements and simulations: any elem@lt PJPso for which a canopy radiation model generates
from these domains can be true values. We defifditput comparable with measured data. In terms of these

neighborhoodsO, and O, about measured reflectancedotations we formulate the inverse problem as f:0||eOWSZ given
A™NQ,) and T (Qo) as Diner et al, 1998a] a;tmosphencallly correcFeq canopy reflectanced "KQO),
I (Qg) and their uncertaintig8,, O, find all pLJ Py, for which

[~ A Ok = O O -
Op = EAhem(Qo) UDp:Ap gb\hem(Qo), A)Tem(Qo)QS hAE’ A"M(Q0) 0O, (6)

4 F(Qp) 0O, . (7)

o} :{F(QO) 0D, :Ar[F(QO),F(QO)] <h } The algorithm is de_signed to utilize all the available informa-
tion of the observations by means of a two-step process. The
where first step involves a comparison of the retrieved spectral hemi-
- spherically integrated reflectances with those evaluated from
AAE”A“E’“(QO),A“E’“(QO)E the model, i.e., solution of (6). Only thosavhich satisfy this
test are subject to the second step, which is a comparison of
4 DAJ\‘em(QO) - Z\/{‘em(go) E’f their directional reflectances at the MISR angles to the retrie-
ZVA(I)D : aAl) ' L ved spectral directional reflectances, i.e.,the solution of (7).
== B " A H , (5) In order to quantify solutions of (6) and (7) we introduce
vall) measures (distribution functions) defined on the Rgt as
Z A follows: The subsetPy, is represented as a sum of
h nonintersected subsets

A, [F@o) T Qo))

N
40 1, (Q),Q0) -1, (Q,Q0) Pbio:UPbio,kv Riok M Pio,j =0, k#j .  (8)
Z ve(l, 1) —— 0 1

_ 1= IE D r ’J D . .

= VR . Let Na(L;Pyio) and N; a(L;Pyio) be numbers of subse,,

Z Zvr a,i) containing at least one element from theQ@gt.,O4;Pyi0) and
ENE Qar(L)=Qa(L,0n;Puio) N Qi(L,O;;Pyio), respectively. As meas-

ures ofQa(L,Oa;Puio) andQ; A(L), we introduce biome-specific
Herev,(l)=1 if the BHR (or DHR) at wavelength exists and functionsFapo(L) andF, apio(L) as

0 otherwisey(l,j) takes on the value 1 if the HDRF (or BRF)

at wavelengthl, and in scattering directiof?; exists and 0 Fanio(L) = lim Na(liPhio) ©)
otherwise;g, and g; are uncertainties in the BHR (or DHR) ' N - N (LAl yax Boio)

and HDRF (or BRF) retrievals artgl andh, some configur- N, A(L:Ry)

able threshold valuesDjner et al 1998a]. Thus modeled F abio(L) = lim r,A\ = bio . (10)
quantities are defined to belong to a neighborhood around the B N~ oo Np (LAl maxi Roio)

measured values such that a model which differs from tlle th tical d inti f th .
retrieved BHR (or DHR) and HDRF (or BRF) values by an maihematical description of the convergence process 1s

amount equivalent to or less than the retrieval uncertainty Wﬁfesgfnted mt ﬂ;e Appendni_. I?tU|t|veLy, the Sum?*"'k. fi
result in valuesi, and4, of the order of unity. specifies a set of canopy realizations whose range of variation

Any canopy realizatiopJP for which 7(Qy)0O, and is “sufficiently small.” Na(LAl naPrio) and Nea(LA! max Poio)

A"™"Q,)00, must be considered a candidate for a prueet '€ total number of solutions of (6) and (Ri(L;Pyo) and

us introduce sets of candidates for the solution as follows: _N"A(L;Pbi") are the number .Of thes_e solutions when Ligy
is less then a given valuein the interval [LAkin, LAlma.
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The functions (9) and (10) are the LAI conditional distributiotinear function with respect to wavelength in this example;
functions providedpiP,, and validity of (6) and (7), that is, pqei(A)=S(A1-A)+p1. The slopes, effective ground
respectively. Note that the functions (9) and (10) depend orreflectance in the first MISR barng and LAI, can vary con-
and neighborhood®, andQ,. The values tinuously within given biome-dependent intervatsf,Omad,
[SmimSmad @nd [LAlyin, LAlLa]. Thus the sePy, bio=1, is

LAI
i defined in our example as
Labio = IldFA,bio(I) , (11)
LAT i Rio ={ (0,5,LA) : prjn < P < Pryays
Al Smin < S< Smaxe LAl min < LAL < LAl o )
Lt Abio = Il dF: apio(l) (12) The function! takes the forml(p)=LAl in this case. We
LAT min choose 40 elements,
are taken as solutions of (6) and (7), and the values p=(0.025, 1.18410*, LAI), LAI,=0.1 + k-1)x0.25, (15)
LAI o k=1, 2, ..., 40,
2 = —_ .
dabio = J'(LArbiO |)2 dFabio(l) (13) from the setPy,. For each soil/LAl patterp, we estimated
LA min DHR for the four MISR bands, which were taken agQ).
LAl The uncertainties in (5) were simulated as
d? bio = J.(Lr,A,bio_I)Z dR abio(l) 14) 4 [ hem ]2
LAT i, Z Ay Qo)
- . ox()=e? S, (16)
are taken as the characteristics of the solution accuracy. If (6) 4

and (7) have no solutions (i.&50), we assign a default value . . . . .
. wheree¢ is a variable in the calculations; that is, these uncer-
to (13) and (14). We propose to archive (11), (12), (13), and. . . . .
A . . tainties can be interpreted as the mean retrieved uncertainty. If
(14) for all six biomes for diagnostic purposes. the values APM(Q) . A=Ay, Ay, As, As, are approximately of
We note some properties of the functidfg,, andF, s o A 0/ » A7/ F12s 713 Fs P y

. . - . the same order, the value of the merit function (5) using un-
which help to explain the definition of the solution (Appen_certainties of the individualm(Q,) is close to that when
dix). It follows directly from definitions (9) and (10) that if ~ . A 0

. . o using (16). In the general case, the merit function using (16)
the function I(p) is constant, sayl(p)=L, when . .
. . describes the closeness between measured and simulated val-
pDQA(LAI max;OAvPbio) and pDQr(LAI ma><1OA,rvPbi0)s then I—r,bio H H T F
and L. .. coincide withL". This allows the use of three-di- Y€S Worse than the ones using the individual uncertainties,
rAbio ) i.e., neighborhood®, determined by the merit function (5)

; o . . i.e
mensional canopy radiation models for which LAl is usually . . N

. Ry . . .¥Vlth (16) are broader than the ones accounting for individual
not in the model parameter list. In this case, canopy realiza-

. . . . ncertainties. One object of our study was to analyze the be-
tions can vary considerably, while LAl remains unchanged. . o A
. - avior of the parameter distribution function in situations
This property shows that (11) and (12) are sensitive to L . o
N . worse than what may be realized. The parameters used in this
but not to the situations generating the value of LAl It fol- .
lows from this that if the inverse problem has a unique sola’tUdy are as follows: the polar angle of the unit directign
P 9 48 pw=0.025, Pre=0.070, Su=1.18410°%

. . was
tion for given set of measurements, then (11) and (12) COIQ{a};LSQ&IO"‘; LAl =0.1: LA}.=9.85:f;=1 £=0.20, and

cide with this solution. If model parameters fromhA:l- The numbeN in (8) was 1000, which was large enough

Qu(LA! mas OnPrio) AN Q (LA maxOniPoio) can generate sev- approximate the parameter distribution functions (9) and
eral values of LAI, (11) and (12) provide a weighted mean @0) sufficiently well
e Y :

accordance with the frequency of occurrence of a given val The total numberNa(LAI yaxPrio), Of solutions of (6) for

e e et s b g 40 patern of negrhoot are plotied i Fiute 1
) prop P he neighborhoods are sorted with respect to val(®s

convergence of the algorithm; that is, the more the measure ) . ) )
N 9 : ' wherep, is the soil/LAl pattern (15) for whic, was simu-

information is available and the more accurate this inform?- . . .
o . . ted. Valued(p,) are shown on the horizontal axis. Figure 2
tion is, the more reliable and accurate the algorithm outpu

will be presents the numbers of different valued(pj whenp ran

) L . . ver the seQa(LAI 1axOna;Puio), i-€., numbers of different val-
Flgures 1-4 illustrate various aspects of the function ( es of LAI satisfying (6). Figure 3 demonstrates the functions
and retrieval results for biome 1 (grasses and cereal crops) %r _ . .
40 different neiahborhood,. This biome . " dA apio(L)= Fapio(L+0.25)F4io(L) for five different patterns of
N b type Is represented ) ©n di two t f shapes/By 0. The first
by five parameters in the algorithnDiper et al, 1998b] A ONE can discern two types of SNapesabio. The 1Irs
S . - ’ " one localizes values of LAI sufficiently well (curves 0.1, 1, 2,
which include the “effective” ground reflectances g en(A) and 3). They correspond to neighborhoads for which
(section 6) in the MISR bands, i=1, 2, 3, 4, and LAI; that is, .

B . . I(p)<3. The curve 5 shows that the setpafor which model
P=(P1, P2, 3, puy LAI). The effective ground reflection was aresults are nearly equivalent to the measurements is rather big.
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700 10
& 600 9
2 500 z 8
3 4 7
S 400+ 3 6 B
3 g 5
£ 3001 s S) g
Z 200+ s 4 3
] 4= <
3 g 3
— 1004 _1
il 2
0 an LUV 1
01 1 2 3 4 5 6 7 8 9 0
NeighborhoodsOa 011 2 3 45 6 7 8 910
Figure. 1. Total number of solutions for 40 patterns of NeighborhoodsOa

neighborhood®,. The horizontal axis shows the valugs), ) ) . .
wherepy is the soillleaf area index (LAI) pattern for which Figure 4. Comparison of the retrieved and exact solutions of

was simulated. the inverse problem for 40 patterns of neighborho@gs
Vertical axis on the left side: 1, exact solution; 2, retrieved
30 solution. Vertical axis on the right side: 3, IBQrve_1-

curve_2|/curve_1; 4, 1Gd), y/curve_1.

25 -

We will quantify this situation in section 3. Figure 4 contains

two plots; the first one with the vertical axis on the left side

15 4 N demonstrates exact (curve 1) and retrieved (curve 2) values of
4

LAI for our patterns of0,. The meaning of the horizontal axis
101 is the same as in Figure 1. The second plot with the vertical
Ll
Ojlnnn.nII"“.““ LI
01 1 2 3

20 4

axis on the right presents valug,=100dapi/Lapic (Curve

3), andd 4 =100JLAl sio-Lapiol/LAl b, (curve 4) for 40 patterns

of O, Here LAL,= I(py) is the value of leaf area index for
which O, was simulated antap, is the value obtained from
NeighborhoodsOa (11). The valuedp, Mmainly varied between 11% and 28%,
even in cases when the algorithm retrieves LAl accurately
f(compare curves 3 and 4). The range of variation8, i,

Number of different values of LAI

5 6 7 8 9

Figure 2. Number of different solutions for 40 patterns o

neighborhood©,. however, is comparable to the uncertaintyopf(recall that in
0.8 our engane this set includes elements that differ from a given
ol —-— .1 vectora "*"(Qg), on an average, by 20%). Therefore (13) can
0.7 1 be taken as the characteristic of the inversion accuracy.
0 6J """ 2 ——=3 However, this value is slightly sensitive to the two cases when
' "l 5 the function (9) localizes LAI values (Figure 3, curves 0.1, 1,
~ 054 I 2, and 3) and when such localization does not take place
:Zi 0.4- '|| (curve 5). Therefore one needs an additional characteristic
'§ ' | that distinguishes these two conditions. We must also pay
L o3q)| ! | attention to the case when the accuracy of the retrieved LAI
0.2- l l - exceeds the uncertainty ob,. The neighborhood with
Ioes A I(p)=0.1 demonstrates such an example. In this ¢¢sE000
011 1, ', II" \ ‘\ in (8) was not big enough to adequately represent the set of
0 i ] 2/ _ i i \ possible observations. There were vectés R* which are
0 ) 4 5 8 10 close to the simulatedA™™Q,), A= A™MQ,) and which

) ) ) were not elements @,.
Leaf area index, L (dimensionless)

Figure 3. Localization of probable values of LAI. The 3. Saturation Domain
function AFapio(L) = Fapio(L+0.25) - Fapo(L) shows the
probability distribution of multiple acceptable solutions for Calculations presented in section 2 indicate that there may
five different patterns oD, Curve 0.1:(pg=0.1; curve 1: pe “small” neighborhood®, andO, in D, andD, which can
I(pY=1; curve 21(pJ=2; curve 31(pJ=3; curve 51(pg=>5. be generated by a rather “wide” set of the canopy realizations.
Curve 5 in Figure 3 illustrates such a condition: preatisfy-
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ing I(p)=3.5 with equal probability can be a solution of (6). Inw(l_* L) = dH, (1) dH (g)
our study, similar behavior was observed for all patt€@ps ' ,r L ¢

corresponding t(p)=5. The aim of this section is to quantify tmsmgsu.];tmax
these situations. Imin <9< max

Let us consider the s&(L ,L) defined as minﬁ%olmaxﬁ %min{%’gm} g
Sio(L' L) ={ PRyt L' SI(P) <L LSLA e} (17) - D oM@ )
This set does not depend on canopy reflectances. A measured max@'m'“'%maxﬁanaxﬁ'/ 'gminﬁ H
A™MQ,) is defined to belong to the saturation domain
DsA1Da, and a valuel A0[LAI i, LAl e, is a saturation if L <L < LAl and
point i WL L) =(L LA )
{pD Poio - *Lj\sl(p)<LAI max and Ahem(QO)DOA} - S - E

= Spio (La: LAl may) - (18) = B IdHG(g)EUHL(l)
This equality shows that for give®,, a canopy radiation ma@m.n,%maxﬁﬁnaxg-/ amn]  H

model is insensitive to the canopy realizations from the set
Sio(L A LAl ma). All A™Q,) satisfying the condition (18) if L = LAl Note that the function (20) is expressed in the
constitute the saturation domady » Figure 3 demonstrates form of the Stieltjes integral, where

one example of an element from the saturation domain and

saturation point: the neighborhodd, corresponding tq,; EO .If 9= Gmin
(see (15)) belongs to the saturation domain, and any value of Hs(9) = o, if Omin <9< Imax;
LAl from 3.6 to 9.85 can be a solution with equal probability. Egmax, if Omax <0
The pointL=3.6 is the saturation point. Similarly, a saturation )
domain,Ds (1D, and saturation point,”, J[LAI yin, LAl yad, fOr [0, if I'< Liin;
the HDRF and BRF can be introduced. H ()= H if Lin <! < Lmaxs
In the algorithm, the leaf area distribution function is B_max, if Linax <!
parameterized in terms of ground cogeand mean leaf area
indexL of an individual tree (section 5). The ranges If Lyin<Lmax @Nd0min<Omax then the Stieltjes integral coincides
with the classical integral, andiH (I)=dl, dHg(g)=dg.
Orin <GS Gmao  Lmin< L < Lmax However, if Lyii=Lmax and/or gmin=gmaxe the classical integral

of their possible variation depend on the biome type and agwves a value of 0, while the Stieltjes integral provides the
assumed to be knowiKifiyazikhin et al this issue]. Thus the correct value. Thus (20) specifies the distribution of LAl in
functionl(p) has the forni(p)=gL, and the set (17) in our algorithm. Note that if LAl and model
LAl 1= Gl LALAE Grolmas - (19) tpaa:(r:rgséfgsé rasriiti:g?;efgrlr:.another manner, function (20) may
We note that in the cases of biome 1 (grasses and cereallf A"™"Q) and F_'(QO) belong to the saturation domain,
crops), vegetation is idealized as a horizontally homogeneahenL’, andL’, exist, such that
medium Knyazikhin et al this issue]. For this biome,
Omin=9max—1. Analogous to (9) and (10), a solution distribution
function for the saturation domain can be introduced as

Fabio (L) =®(La,L) and F; apio(L) =®(L;, L)

for all L from [LAIl,in, LAl 1ad. In this case, the solutions (11)
NS(L*,L) and (12) and their variance coefficients (13) and (14) can be
expressed as

Laio =S1(La)» dapio =Sa(La) —SP(La) . (21)

oL, L) = lim —2—=

N-o Ng(L, LAl nay)

where N is defined by (8) andNgL',L) is the number of

subsetd,;, « containing at least one element from the set (17). * * *

ACCOUHtiT’TQkfOI’|(p)=ngwe get ( ) Lr,A,bio :S:L(Lr) ! drz,A,bio ZSZ(LI‘) _SEI.Z(LI‘ ) ’ (22)
* where

oL Ly=—YE.D (20)
YL LAl o)

where the functioqu(L*,L) takes on the value 0OliL", and

LAl hax
s (L) = J Xda(L",) , k=1,2.
LA min

The functionss, ands, are known and determined by canopy
characteristics only and are independent of the measured

32244



KNYAZIKHIN ET AL.: ESTIMATION OF LAI AND FPAR FROM MISR DATA

3 express the saturation criterion for biomes 1 as follows: If
Biome 5 and 6 A"™Qy)0Ds Aand I (Qe)0Ds,, then
257
Biome 3 \ Lapio + \/§dAvbi0 =LAl o and/or 23)
g 2 . I-r,A,bio + \/Edr,A,bio =LAl max
B Biome 2
o L57 where Lapio, Aapior Lrapior @aNdd, apio are evaluated from (11),
% ~ ~ (12), (13), and (14). Thus after the evaluation of LAls and
a ir ~ their variances, condition (23) is checked. We archilg,-
Biome 4 ~N and €, apio if (23) is satisfied to a given accuracy. Inclusion of
051 N < the minus sign means that a solution LAI was found, but the
T value probably belongs to the saturation domain and any value

0 of LAI from [2MAI- LAl 1 LAl e Must be considered as a
true solution with equal probability.

Retrieved LAl Other biome types do not allow for the formulation of the
Figure 5. Saturation curves for six biomes. If the measuredfturation criteria in a such simple form. Therefore we store
canopy reflectance belongs to the saturation domain, then g&uration curves for all biomes in the look-up table. After
point (LAI, d) lies on the saturation curve. Here LAl is theevaluation of LAls from (11) and (12) and their variances

retrieved value of LAl and is its dispersion. from (13) and (14), conditionsm(dapolase)=0 and
M(d apiosLr apic)=0 are checked. Here

quantities. The set of pointsy(L’), V(sy(L')-s:*(L"))] obtained m(d,L) = min

by runningL” over [LAly, LAl determines a curve which LAl min<L <LAl max

is termed a saturation curve. Figure 5 demonstrates saturation {[S]_(L*) - |_]2 +[ 52('—*) _512(|_*) _d]z}. (24)
curves for six biomes which correspond to canopy

parameterization introduced byMyneni et al 1997; We archivedap, and € 4y if these relationships are fulfilled
Knyazikhin et al this issue]. These relationships allow us t#o a given accuracy.

formulate a necessary condition for the measured reflectances

belonging to the saturation domain as follows: 4, Radiation Transportin a Canopy

A"™"MQe)0Ds 5 and T (Qe)0Ds, then the pointsLpio, dapio] _ _

and Liaso Grasc belong to saturation curves, or what The set_sP,_DA, and D,, which _represent a!l possible
amounts to the same thing, solutions of the equatiof&NOPY realizations and corresponding observation of canopy
$LA)=Lano S(La)-5AL)=Raro and SiL)=Lrasor SoLro)- reflectances, are static tables in our algorlthm, ie., look-up
Slz(Lr,d):dzr,A,bio satisfy the equalitieba=Ly and L,=L, 4. Here tgble_ termed CART (ca_nopy archlte(_:ture rad_latlve transfer)
the-right hand sides of these equations are evaluated durm% in the MISR Algorithm Theoretical Basis Document

the execution of the algorithm. The left-hand sides are knoWR'ner et al, 1998b]. The algorithm interacts only with
functions of one variable. elements of these sets. This provides independence from a

This criterion takes a simple form in the case of biome particular canopy radiation model. A question then arises as to
It follows from (20) andgm= Gm=l that the solution how the CART file has to be filled. In answering this

distribution function for the saturation domain in thes@uestion, we aimed (1) to minimize the size of the CART file
and (2) to minimize the dependence of the CART file on a

biomes is
particular canopy radiation model. The aim of this section is
Co, if L<L', to give a precise definition of elements®f andD,.
. B Lo . The domainV in which a plant canopy is located is
d(L ,L)=g—, if L <L<LAIl pa parallelepiped of dimensioiXs=Ys=1.1 km and biome-
LAl max — L dependent heighfs. The domainV can contain subdomains
%, if LAl oy <L (or fine cells) whose size depends on the heterogeneity of the
biome type. The to@V,, bottomdV,, and laterabV, surfaces
Equation (21) is reduced to of the parallelepiped form the canopy boundary,
. NV=0V+dVy+ V.. The function characterizing the radiation
Lapio (La) :M, field is the monochromatic radiantgwhich is a function of
' 2 wavelength A, location r=(x,y,2, and directionQ. In the
. 1 R absence of polarization, frequency shifting interactions, and
d%\,bio(LA):E(LAl max"-A) emission processes within the canopy, the monochromatic

radiance is given by the steady state radiative transfer
and (22) can be simplified to a similar expression, with equation,
replaced byL’,. After obvious transformations, one can
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Qe 0L, (r,Q) +u, (r)G(r,Q)L, (r,Q) reflectance factors of the lateral and the bottom surfaces,
1 respectively; and ;nn, and p are the outward normals at
:uL(r)J.;r(r’Q' - Q)L, (r,Q)dQ" +F,(r,Q), (25) pointsr,ddV;, r0dV,, andry0dV,, respectively. A solution of
4 the boundary value problem, expressed by (25)-(28), describes
whereQs is the derivative at along the directio®; u, (in the radiation regime in a plant canopy and, as a consequence,
m?m’) is the leaf area density distribution function (leaf aretEflectance properties of the vegetation canopy.
per unit volume)G (dimensionless) is the mean projection of The hemispherical-directional reflectance factor for
leaf normals at on to a plane perpendicular to the directiofonisotropic incident radiation, or HDRF, is defined as the
Q. A precise description of these variables can be found in tHio of the radiance leaving the top of the plant canopy
works ofRoss[1981] andMyneni[1991]. Here we follow the La(ruQ), Q+n>0 to the radiance reflected from an ideal Lam-
formulation of Mynenj 1991] for the above mentioned bertian target into the same beam geometry and illuminated
variables. Note that there is a tefpin this equation which under identical atmospheric conditioriBirfier et al, 1998a]
accounts for the hot spot effect: a rather wide family ofhich can be expressed by a solution of (25)-(28) as

canopy radiation models are described by an equation of this L, (1, Q)

form [Knyazikhin et al.this issue]. The choice &, depends "1 (©,Q) = , Qeng>0. (29)
on the model used to simulate the hot spot effect, and it is ;ZIL,\ (r,Q")[Q+ ny|dQ’

assumed to be known. We should note thamay take on -

negative values. Thus (25) is a closed mathematical equation

B . L . . . The bihemispherical reflectance for nonisotropic incident
(not a “physical equation”) and is used as the theoretical basis,. .. . ) ) . .
. - - radiation, or BHR, is defined as ratio of the radiant exitance to
of an algorithm for LAI/FPAR. This type of equation also, . . . ] .
. . . the incident radiantjiner et al, 1998a]; that is,
arises in reactor problems, and so we will closely follow some

methods from this discipline V]adimiroy, 1963; L, (rth)|Q . nt|dQ
Germogenoval986].

Equation (25) alone does not provide a full description of AP™(Qq) =2 : (30)
the transport process. It is necessary to specify the incident J'—A (th')|Q' ”t|dQ'
radiance at the canopy boundaW, i.e., specification of the -

boundary conditions. Because the plant canopy is adjacent e HDRF and BRF depend on the rafig of direct

thed atmosphﬁre,h_nﬁlihborlg% canoplelils a_nd the SO_'I antrj] fhdiance on the top of the plant canopy to the total incident
understory, all which have different reflection properties, the _ ;.o o ¢ f,=1, the HDRF and BHR become the

followmg b%qnqlary cond|t|oni9\g|zlllbe used to describe thBidirectional reflectance factor (BRF) and the directional
incoming radiationfRoss et al I hemispherical reflectance (DHR), respectively. Hg(Q,Qo)

L, (r,,Q) = Lgoﬁ (1, Q,Q0) + '—trgp,\ r)3(Q-Q,), (26) and A*™(Q,) denote the HDRF and BHRji,(;tl_) or the_ BRF_
and DHR f{y=1). The MISR instrument provides this ratio,
r0oV,, Qen, <0, and so, it is input to the algorithm. Equations (29) and (30)
depend on canopy realizatigdlP. Evaluating (29) and (30)
Ly(r,Q) = 1 IR| 4 (Q,Q)L, (n, ’Q')|Q' . n||dQ' for all pOP, one obtains the se® andD,, which contain all
T is0 possible values of the HDRF and BHR.
FLE (0, Q.Q0) + LRy ()3(Q-Q0),  (27)

5. Assumptions: Radiation Transfer Process

nbovi, Qen<0, Theoretically, the set®, andD, can be generated offline

1 by solving the transport equation at four MISR spectral bands
La (rb'Q):; J'Rb,)\ (Q QL) (15, Q)|Q"* np[dQ" . (28)  for various combination of Sun-sensor geometry and all
Q'+ny>0 canopy realizations from the gt However, one can realize
(03Vs . Qen< 0 it only if the setdD, andD, can be reprocessed with minimum
' ’ effort. The time required to precompute these sets is a direct
whereL"?;, andL'*",,, are the diffuse and monodirectionalfunction of the number of spectral channels used, combina-
components of solar radiation incident on the top surface tbns of Sun-sensor geometry, and elements in the.debr
the canopy boundan®V; Q, is the direction of the example, the generation of the Bgtusing this direct method
monodirectional solar componen®) is the Dirac delta- takes approximately 192 computer hours of medium perform-
function; L'atm,,\ is the intensity of the monodirectional solarance IBM RS/6000 RISC workstatioRyinning et al 1996].
radiation arriving at a pointr,0dV, along Q, without The size oD, containing BRFs for two spectral bands and for
experiencing an interaction with the neighboring canopies]l six biomes is about 63 megabites. The inclusion of more
L'a‘d,A is the diffuse radiation penetrating through the laterapectral bands and view directions leads to significant de-
surface &V; R, and R,, (in sf) are the bidirectional mands on the core memory required to execute this algorithm.
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It makes this approach impractical in the case of MISR Ng 1 Ng
instrument. The aim of this section and section 6 is to formu- LAl = Z Ik quL (r)dr= Z gkLAl
late some assumptions allowing for a significant reduction in =1 Y =1

the size oD, andD,.
A ' where S, is the crown projection of th&th tree onto the

5.1. Conservativity ground; g=S/(XsYs) and LAk is the leaf area index of an

A radiative transfer model is defined to be conservative ﬁ]dlwdual tree. Thus LAT'is LAl gLAl,, where g =3 5.0,
. is the ground cover, and
the law of energy conservation holds true for any elementary

volume Bass et al 1986]. Within a conservative model, 1 N
radiation absorbed, transmitted, and reflected by the canopy is LAl =— Z gy LAl
always equal to radiation incident on the canopy. A rather 9=

wide family of canopy radiation modeljusk 1985; is the mean LAI of a single tree. The spatial distribution of

Marshak 1989; Pinty et al, 1989;Li and Strahley 1992; trees in the stand is a characteristic of the biome type and is

Myneni et al, 1995; Pinty and Verstraete 1998] which assumed to be random. For each biome type, the leaf area

agcounkt) for (tjhe hotlspot aLel eqqlvaliljthtoththef SO':;O; of tQ}l'eensity distribution function is parameterized in terms of the
above boundary vaiue problem in which the funcinnas ground cover and mean leaf area index of an individual tree,

the following form Knyazikhin et al this issue]: each varying within given biome-specific intervadgf, Omad
Fa(r,Q) = [o(r,Q) - ou(r,Q,Q0)]LhA(r,Q). and L., Lmad, respectively. Thus the vegetation canopy is
represented as a domaih consisting of identical trees in

Here Ly, is the upwardly directed once-scattered rad'ancc?rder to numerically evaluate the transport equation.

produced by the hot spot, aag} is a model-dependent total
interaction cross section, introduced in canopy radiatiafi3 Anisotropy of Incoming Diffuse Radiation
models to account for the hot spot effect and to evalyate . .
The total interaction cross sectianis used to evaluate the A model of cIear-sky radiance prpposed Bykrowski
attenuation of both direct solar radiance and multiply scattere&t 2,9] ',S useq to approx.lmate thg r§t|o betvyeen the angular
radiance. Becausg, can take on negative values, it has nglstnbunon of incoming diffuse radiation and its flux:

physical meaning in .te-rms of energy cons-ervation. Thes.e LS’S’(rt,Q) 0 0.32%+Q° Q

types of canopy radiation models are mainly used to fit =0 -ex .
simulated BRFs to measured BRFs. However, the ability of a J'Lifﬁ (r, Qud B || —Q+ Qg
model to simulate canopy reflection is not a sufficient -

requisite for the solution of the inverse problem. Canopy
radiation models must also satisfy the law of ener
conservation and provide the correct proportions of cano
absorptance, transmittance, and reflectance. Because
retrieval algorithm is based on energy conservation,
following “minimum” requirement, which the canopy

radiation models must satisfy in order to be useful for inver@4 Boundary Conditions for Lateral Surface
problems, is formulated: o

ere Qu,¢) and u<0. We assume that this ratio does not

pend on wavelength. The diffuse radiatid®,, does not
|;?Qend on the top boundary space poio®V,. This allows
tﬁ}ae parameterization of the incoming radiation field in terms
of fg, and the total (diffuse and direct) incident flux.

The radiation penetrating through the lateral sides of the
J'erdQFA (r,Q)=0, (31) canopy depends on the neighboring environment. Its influence
Vv In on the radiation field within the canopy is especially
pronounced near the lateral canopy boundary. Therefore
for anyA. This equation does not allow a nonphysical sourGgaccuracies in the lateral boundary conditions may cause
Fi(r.Q) to influence the canopy radiative energy balancgstortions in the simulated radiation field within the domain
Currently, we use a model far, proposed byMyneni et al. v These distortions, however, decrease with distance from
[1995]. A nonconservative canopy radiation model must ks phoundary toward the center of the domain. The size of the
corrected, as described in section 8. “distorted area* depends on the adjoining vegetation,
atmospheric conditions, and model resolutiokrahigk,

5.2. Leaf Area Index 1996]. In particular, it has been shown that these lateral

The leaf area index LAl is defined as effects can be neglected when the radiation regime is analyzed
1 in a rather extended canopy, as is the case considering the
LAI =—J'u|_ (r)dr . rather large MISR pixel (~1.1 km). Therefore we idealize our
XgYs . S . )
v canopy as a horizontally infinite region. We will use a

“vacuum” boundary condition for the lateral surface to
numerically evaluate a solution for the case of a horizontally
infinite domain,
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L,\(th) =0, r|D6\/|, Qen<0. (32)
5.5. Optical Properties of Foliage -
The leaf-scattering phase functigr, is assumed to be bi- é
Lambertian Ross and Nilsqn1968]; that is, a fraction of the -2
energy intercepted by the foliage element is reflected 0§

transmitted in a cosine distribution about the leaf normal,
ya(rQL,Q - Q)
_Hoa (R QL (@)@ Q1) <0,
B toa (NQQ | (Q-Q)(Q'*Q)>0.

Reflection (di

Hererp, andtp, are the spectral reflectance and transmit-
tance, respectively, of the leaf element. Figure 6 shows an
example of the sensitivity of the reflection coefficiep} for

the 1-year shootsP{cea abies(L) karst) on its location in
space. In spite of this spatial variation the shapes of spectral
reflectance and transmittance are rather stable. For example,
compared with the mean, the deviation is, on average, abogt
12-15%, which does not exceed the accuracy of the canoé/
radiation model Knyazikhin et al. 1997]. Therefore the 2
spatial variation of foliage optical properties can be neglecte(é
Thus the algorithm can be parameterized in terms of spectral
leaf albedow(A)=rpt+tp . FOr each biome the mean spectralé
leaf albedo is stored in the CART file. The ratig/a(A) is 3
also assumed to be independent of wavelength, in any giveh
biome type. We note that the validity of the assumptions 5.3-
5.5 was verified by comparing simulation results with field
measurement¥Kyazikhin et al.1997].

6. Assumptions: Ground Reflectance and
Anisotropy

To parameterize the contribution of the surface underneath
the canopy (soil or/fand understory) to the canopy radiation
regime, an effective ground reflectance is introduced, namely®

Ro.1 (', Q)| Ly (1, Q')dQdQ’
— 2m- 2+

T [A@ )L (. Q)
2

Pa.efi (s A)

flection (dimensionle:

HereL, is the solution of the boundary value problem for the®
transport equation;,0JdV, and Q+ny<0. The functionq is a
configurable function used to better account for features of
biomes Knyazikhin et al this issue], and it satisfies the
following condition:

J'q(Q’)dQ’ =1.
2

Age of needles

0.16
0.14  currentyear —
| secondyear —
0.12 third year - -
0.1 fourthyear —
0.08
~" |
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0.04 ¢ . 1
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0
400 450 500 550 600 650 700
Wavelength, nanometer
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0.12 east - - SN
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0
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Figure 6. Spectral reflectance of 1-year-old spruce shoots.

Three characteristics of the 1-year shoots were chosen to
The effective ground reflectance depends on the canogyamine the spatial variations of foliage spectral properties,
structure and the incident radiation field. It follows from théde of needles on the 1-year shoot; position within the tree

definition that the variation gb, ¢« satisfies the following ine-
quality:
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R (Q',Q)|u|dQ Losa(rp2) =0, reloVy,  Qemy<0.
The function Ly, satisfies (25) withF,=0, and the

21+

< Pageft (M1 A)

e mq(e) boundary conditions (32) and
2J’ Ro (@', Q)[u[d0 La(r@) =0, 108V, Qen <0,
<m T+ : Loa(r, Q) = r,,Q), ry 0oV, Qen.<0 .
Q2 mq(Q’) aAMQ) =S, Q). 1e0Vs b

_ o ) It describes the radiation regime in the plant canopy generated
that is, the range of variation depends on the integratgg an anisotropic, heterogeneous sougedefined by (33)

bidirectional reflectance factor of the ground surface only. Fscated at the bottom of the canopy. We term the problem of
each biome type, the bidirectional reflectance factor of thgging Ly, the “S problem.” Further,

ground surfaceR,, and the effective ground reflectance are

assumed to be horizontally homogeneous; that is, they do not

depend on the spatial point Effective ground reflectances at T (Qo) = Iq(Q')LbsA (rp, Q|'|dQ" ) ;
the MISR spectral bands are elements of the canopy n

realization pOOP. Various patterns of the spectral ground

reflectance evaluated from the soil reflectance model of

Jacquemoud et a[1992] are included in the present version Fqa () :<2IQ(Q')Lq,/\(rb’Q')|“'|dQ'>;
of the CART file. i

. T(;) accoun;[cffor_the amsc(;trop_y of the ground surface, Where the angle brackets denote the mean over the ground
introduce an effective ground anisotroRy surface. Note that we can replace the approximate equality in
(35) by an exact equality if a one-dimensional canopy

J'_Rb')‘ @ ’Q)|M|LA (I, £)dC2 radiation model is used to evaluate the radiative regime in

Sq(rp, Q) = 1 n , (33) plant canopy. It follows from (35), (29), and (30) that the
Pgeti (A) rrJ'q(Q’)|u'|L,\ (rp, Q")dQ’ BHR, A®™(Q,), the HDRF,, and the fraction of radiation
I absorbed by the vegetaticad®™, at wavelengthA can be

oV, Qen,<O. expressed as

The effective ground ar.1isotro.rI§(1 deperlds on the canopy A/r\"em(Qo)zrgSe’T(Qo)-p.tq}A Mtgzr}q(go) ,
structure as well as the incoming radiation field. We note the 1= pgeft (/\)rq,}\
following property: (36)

[/Saro Qa2 =1 ; (34) (2 Q0)=

+ Pa.eft (A)

o Thsa (©2,Qq) + 1T (Q)#tEZTq(Qo),
that is, the integral (34) depends neither on spatial nor on Paef aA
spectral variables. For each biome type, the effective ground (37)

anisotropy is assumed to be wavelength independent. A Paei (A) remg

detailed specification of this variable is presented bi""(Qo)=ape; Qo) + g, - o bsh Qo) »
Knyazikhin et al[this issue]. The ground anisotropy is used to Pa.eff (A) g a
precompute some solutions of the transport equation and thus (38)

is not stored in the CART file. whererhe"‘bs,\, Fosa andahembSA are the BHR, HDRF, and the

fraction of radiation absorbed by the vegetation, respectively,

7. Basic Algorithm Equations when the effective ground reflectance is zero. Here
Under the assumptions listed above, the solution of the T4 (Qp)
boundary value problem for the transport equation can be tgg'j\lq Qo) = bsA 1270
expressed a¥pyazikhin et al this issue] J'|u’|L,\ (r,Q"dQ’
Ly (r,Q) e
Pqeff (A) is the weighted canopy transmittance,
= L, (r,Q)+#T§S/\ (Qo)Lga (1. Q). (35)
aet el tga = [IH|Laa (e @)a

2"
Here Ly, is the solution of the “black-soil problem” which
satisfies (25) with the boundary conditions expressed by (2

@ the transmittance resulting from the anisotropic so&ce
(32), and

tated underneath the canopy,
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T (Q)=Lgx (1, Q) et al, this issue]. Within such a model the radiation absorbed,
transmitted, and reflected by the canopy is not equal to the
is the radiance generated &ywhich leaves the plant canopyradiation incident on the canopy. The functiBnis chosen
at the top, andy, is the fraction of radiation generated 8y such that the model simulates the reflected radiance correctly;
and absorbed by the vegetation. The radiation reflecteflat is, these models account for photon interactions within a
transmitted, and absorbed by the vegetation must be relaggther small domain of the vegetation canopy. On the other
via the law of energy conservation: hand, it is the within-canopy radiation regime that is sensitive
i i tL‘,eTqu(Qo) to the canopy strucFure and therefqre to LAL The within-
rbsgw + kg (Qo)t bgTq +aE§r/1\1 =1, kg (Qo) = t?emq . canopy radiation regime also determme.s the amou.nt of sqlar
thea (Qo) energy absorbed by the vegetation. Ignoring this
(39) phenomenology in canopy radiation models leads to a large
number of nonphysical solutions when one inverts a canopy
Fga tlga taga =1. (40) reflectance model. It may even be that that the saturation
domain coincides wittD, and D,. Therefore (36) and (37)

Note that all variables in (36) and (37) are mean valug§st pe transformed before they can be used in a retrieval
averaged over the top surface of the canopy.

algorithm.

It follows from (36) that Let us introduce the required weights

APemie Y _phemiq Paeft (A) thema gy _ Tpsa (Q,Q0) _
W (Q0) ~Tosa (Qo) =t 1= pger Mras 2 (Qo) Wi (Q,Q0) —m, 2-7[+Wbs,)\ (Q,Qo)|u[dQ =1,
(41) (42)

This equation shows that the contribution of the canopy Tﬁ(Q)
ground surface to the canopy-leaving radiance is proportional wi(Q) Braua IW;? (Q)|u|d=1. (43)
to the square of the canopy transmittance, and the factor of a.A an*
proportionality depends on the effective ground reflectance. If
the right side is sufficiently small, we can neglect this Qen<0.
contribution. With this notation, (37) can be rewritten as

We have expressed the solution of the transport problem
in terms of the effective ground reflectance, and solutions & (2. Qo) = Tips T e (Qo)
the “black-soil problem” and theS‘problem.” The solution of q Pa.eft (A) hemg
the “black-soil problem” depends on Sun-view geometry, + Wt mtbs,\ (Qo) (44)

canopy architecture, and spectral properties of the leaves. The
"S problem” depends on the spectral properties of the leavgsd from (39) and (40) the canopy reflectané‘érﬁ,sﬂ andr g,
and canopy structure only! These properties allow @&n be written as

significant reduction in the size of the CART file because

. . hem _ h =1 h
there is no need to store the dependence of the exiting rbsT—l—tszq -abET ) (45)
radiation on ground reflection properties. Element®o0énd
D, can be composed from precomputed solutions of the Fga =1=tgx —aga - (46)

"black-soil problem” and S problem” and precomputed

values of the effective ground reflectance. Thus (44) is sensitive both to factors determining the

directional reflectance distribution of plant canopies (the

. . weight wws,) and to the within-canopy radiation regime
8. Conservativity As a Tool to Constrain (= apm |t a,,). Equations (44)-(46) also allow the

Retrieval formulation of a test for the “eligibility” of a canopy radiation

In spite of the diversity of canopy reflectance modelgnodel to generate the CART. First the weighis, is
their direct use in an inversion algorithm is ineffective. In thevaluated as a function of Sun-view geometry, wavelength,
case of forests, for example, the interaction of photons wigd LAl by using a field-tested canopy reflectance model.
the rough and rather thin surface of tree crowns and with then, with the same model*"., andr, are evaluated from
ground in between the crowns are the most important factd/9) and (46) and inserted into (42). A canopy radiation model
causing the observed variation in the directional reflectanie “eligible” to generate the CART file if (42) is satisfied to
distribution. These phenomena are rarely captured by mafifhin a given accuracy for any Sun-view combination,
canopy reflectance models. As a result, these models are ofigvelength, and LAI. The requirement (31) is necessary to
slightly sensitive to the within-canopy radiation regime. Thisatisfy this test. However, it is not a sufficient condition to
assertion is based on the fact that a rather wide family Bfovide the correct proportion among canopy absorptance,
canopy radiation models are solutions to (25), includingi@ansmittance, and reflectance.
model-dependent nonphysical internal soufgdKnyazikhin
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We do not know of a canopy reflectance model which cahe transport equation. Valug is a reference leaf albedo
pass the above test. It is because there is no published madeich is specified below. Note that LAl is parameterized in
thus far which satisfies the energy conservation law. Althougarms of ground cover and mean leaf area index of an
a conservative transport equation for a vegetation canopy hiadividual tree; that is,lai=gL. Therefore we distinguish
not yet been formulated, one can derive some properties of beween equal values of LAI corresponding to different values
solutions of this equatiorkhyazikhin et al this issue]. The of gandL in the algorithm.
following properties of the canopy spectral absorptance and In a similar fashion the coefficiemt,s or pt, is the value
transmittanceKnyazikhin et al this issue] are used to correctof x which minimizes the expression
existing canopy radiation models: LafA) andt(A) be the

fraction of radiation absorbed and transmitted by th% lai ') = p |:i—(u*x,[ i ) -t (lai q
vegetation at wavelengthfor either the “black-soil problem” “t.Xx (xlai, e )_IQIB — WX x (1ai, @) X(auw)% w
or the ‘S problem.” The following relationships are valid in 0

both cases:

1 *
D - *
+Ig—1 DXt (lai,0")
_1ovollo) 1meh) ) o0 1mwx

"M =T000) T-wiho)

0) (47)

_ 1-w pa(lai) 1- "

t%’rD(A) 1-¥o(Ao) O,ro(/\o)% (48) 1-wpa(lai) 1-w
wA) O 1-yoe(A) @(Ao)

alai,w’ )0 dw. (50)
]

Here t, is the canopy transmittance for the “black-soil
whereys(A)=a(A)[1-exp(K)] is the unique positive eigenvalue Problem” or the S problem,” which is a function of leaf
of the transport equatiom,, is the spectral leaf reflectance,albedow and leaf area indefai, and is evaluated by solving
and w is the leaf albedoKnyazikhin et al.this issue]. Note the transport equation. The valygtss and pt, for which & ps
that in the case of the “black-soil problem” these relationshi@d & q attain their minimum provide the best agreement to
are valid for the radiation regime, which is the sum of th&8) and to the energy conservation laws (45) and (46).
radiation fields generated by the direct and diffuse As a reference leaf albedo, we take sush which
components of incident solar radiation. The coeffickkmay ~Mminimizes the expression
depend on canopy structure (i.e., biome type, ground cover, LAl 0,
etc.)_gnd _Sun position but not on wavelength or soil type. IEs(w*) - Ea(pa(lai),lai,w*)dlai
specification depends on the parameter type (absorptance or LAJ
transmittance) and the type of transport problem (“black-soil”
or “S problem”). This coefficient, however, does not depend .k .
on the type of the transport problem and Sun position when it~ * Ift,bs(pt ps(lai),lai,w ) dlai

min

LAl hax

refers to canopy absorptance. In the case of canopy transmit- LAT min

tance it depends on the ratig/cw, which is assumed to be LAl max .

wavelength independent (section 5.5). Thus giaeandt at + Ift,q (pty(lai),lai,w )dlai, (51)
wavelengthAo,, we can evaluate these variables at any other LAT i

wavelengthA. These properties can be used to specify correct ]

values of canopy absorptance and transmittance. We introd§¥&€"® LAkin and LAk, are defined by (19). From our
the coefficientsptys ptg, andpa which are equal to [1-exp(- studies, optllm.um values of the reference leaf albedo for our
K)], with the appropriate coefficieri for the transmittances &nopy radiation model are 0.1, 0.26 and 0.34. A canopy
of the “black-soil problem,” theS problem,” and the canopy 'adiation model is recognized as “eligible’sfw ) defined by
absorptance, respectively. Note that the eigenvgldepends (51) is less then 0.001 (we achieved this value by using our

on values of spectral leaf albedo, which in turn depends 8}Pdel)- Note that there is no conflict with the energy
LFi};nservatlon law in the case of tH&pgroblem.” We also note

wavelength. It allows us to parameterize the cano 3 ]
absorptance and transmittance in terms of canopy structJf??t problems (49)-(51) have to be classified as ill-posed
Sun position, and leaf albedo. problems, and so a special technique, for exanipkiionov
The coefficientpa, for LAI equal tolai, is the value ok ~ and Arsenir{1986], is needed to resolve them.
It follows from (36) and (44) that the HDRF can be

which minimizes the expression

represented as
U1l- o x)1-w)
B—

9 aflai,w') - afai,w)0 dw. M (QQ0) = MWys 3 Thsh (Qg) + TWI[AT™(Q0) ~ 13 (Qo)].
H-wx)(1l-w)

(52)

We use (36) and (52) witty,=1 to build the functions (9) and
Herea is the canopy absorptance which is a function of legf ).

albedow and leaf area indebai and is evaluated by solving

1
fa(x,lai,w”):J’
0

(49)
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Thus the BHR described by (36) and the HDRF described [T, if 400sA<)q,
by (52) can be expressed in terms of optical properties of a %:1 +(A=A)(Cy =C)I(Ay = Ay), if A SA<Ay,
leaf and the energy conservation law, as well as in terms 6f = _ _ _ . <
solutions of the “black-soil problem” and ths iroblem” at a 2 +(A=22)(Cs = C2) [(As = A2). I_f A2sA<hs,
reference leaf albedo value af. This facilitates comparison 8‘33' if A3<A<700,
of spectral values of the BHR or HDRF with spectral (57)

properties. .Of individual leaves, ‘which is a r.ather Stabl\‘lzflhere the subscripts 1, 2, and 3 denote the blue, green, and
Sharac.t eristic of a green leaf. .It ?I?’O can be |n.terpreted el bands, respectively. Substituting (57) into (54), (55), and
|nclu.S|on of .adq!tlonal |nformat|qn into the algorithm, .thus 56) as well as accounting for (47), one can expEé&%),
aIIovwng a significant reduction in the number of retrieve . andQ’ as a linear combination e?em/\ and ;Anemehemh A=
solutions. A1, As Az Coefficients of the linear combinations are
o . precomputed and stored in the CART file. A detailed
9. Description of FPAR Retrieval description of a final expression for (53) is presente®ingr
It follows from (38) and (41) that the fractional amount oft al [1998a]. Note that the dependence of FPAR on ground
incident photosynthetically active radiation (PAR) absorbetgflection properties is included igy*", which is provided by
by the vegetation canopy (FPAR) can be evaluated as the MISR instrument; that is, expression (53) is a function of
biome type, ground coveg, mean leaf area index of an
. Qs (bio, p,Q4) + QY(bio, p,Qy) individual plantL, and A;°™. The mean over those valuesgof
FPAR(bI0, p,Q0) = - E(QO) > (59) andL, which passed thAe first test (6), is taken as the estimate
of FPAR,; that is,

where
1
. roonm . FPARAbio = 10— Z FPAR(bio, gy, Ly)
Qps(bio, p,Qp) = IabsA (Qo)Egaeyr (Qo)dA , (54) oL f=
Adonm whereNy, is the number off andL values, which satisfy (6).
QY(bio, p,Qy) When (6) has no solution (i.eFap0,=0), the algorithm
200nm defaults to a NDVI-FPAR regression analysis to obtain an
- g, (Qp) Pyeft (A) thema ehem(Q )dA estimate of FPARNlyneni et al 1997].
g (340 1= paet (A an bs) =0A€) 0
400nm a.€ 9.
oo, Q1) 10. Flow of MISR LAI/FPAR Algorithm
— aA\0/ | xh _.h h
= I tqr(Q0) [A/\em(QO) Fosa (Q0)[For€1"" (Qo) dA , The LAl retrieval algorithm first determines if the 1.1 km
400nm

subregion has a meaningful amount of vegetation by
(55) calculating the normalized difference vegetation index

700 (NDVI) using the previously retrieved DHRs in the red and
E(Q) = EOAeRem(QO)dA . (56) near-IR bands. If the NDVI is less or equal to a threshold
0 ' value, the subregion is classified as barren, and no additional

. . o processing is performed for LAl Otherwise, for each biome-
The Qs term describes the absorption within the canopy fajpecific canopy realizatiop,=(Om1, Pmz: Pmz Pmar LALY,
the case of a black ground, ar@ describes additional condition (6) is checked. Herg,, m=1, 2, ... ,N, are
absorption within the canopy due to the interaction betwegtterns of the effective ground reflectances in the MISR

the ground (soil or/and understory) and the canopy. Hekands), i=1, 2, 3, 4 (section 6). The value of LAI tested is

PUPyo; Eoy is the solar irradiance spectrum known for alliven by

wavelengths;ehe"} is the normalized incident irradiance,

defined as the ratio of the radiant energy incident on tht::AI _g +( -1 Limax = Lmin O

: AR k = Obmin *( ") ————0
surface toE, [Diner et al, 1998a]. The normalized incident 0 N.-1 [
irradiance and the BHR are provided by the MISR instrument _ 0
at three spectral bands within the PAR region. We assume a  x (g, + (] —1)MEL
piecewise linear variation in these variables over regions 8 Ng -1 §
[446nm, 558 nm], [558 nm, 672 nm], and constant over B o
regions [400 nm, 446 nm], [672 nm, 700 nm], i.e., letf)g =1 Np, j=2Ng,

. em ~nem.
represent eithe", or A;"": where the LAl index=(-L)Ni+, andLoin Liae Grine G A€

defined in section 5.2. The biome-dependent parampigrs
Lrmin: Lmax Omin Omaws Np» N, andNg are found in the CART
file. The numbem in (8), which determines the accuracy of
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the approximation oF a po, @aNdF, oo, IS NN Ng. Let Ly, k=1,  Ptpsgin Plosdn Pt Pa, andw are evaluated from (49), (50),
2, ... , N be the set of different values of LAFor each and (51); tpen , ten, apEn, and apEn are canopy
biome type we now compute a histograhiL,) as the count transmittances and absorptances for the “black soil” problem
of how many times the valug passed the condition (6). Theat the reference leaf albed® which result from direct
total number of valid solutions after completion of this test is(subscript “bs,dir”) and diffuse (subscript “bs,dif”) incoming
New irradiance; t and a’ are the canopy transmittance and
Ngoi1 = Zk=l Ny (L) - at?sorptance for theS‘problem” at the reference leaf albedo
w. All these biome-dependent variables are stored in the
For those biomes in whicNs, >0, we now compute mean CART file. An actual value offy,, which the MISR

LAI (11) and a measure of the spread in LAl (13) values fanstrument provides together with BHR, is used to execute the

each biome from first comparison test. For the second tégh=1 is set; that is,
Nia the retrieved spectral BRF is used in this case. The FPAR is
Z N; (L )Ly specified as described in section 9.
L bi ::1— )
Abio Neow 11. Conclusions
Nix The following features of the LAI/FPAR retrieval

Ny (L )(Ly — LA,bio)2 technique are incorporated in the proposed MISR algorithm:
- 1. The measure theory allows us to build a function that
) relates canopy reflectances to parameters influencing the
canopy reflectances without requiring a particular canopy
After evaluation of these variables, conditioms(dap,, radiation model. This parameter distribution function
Lapio)=0 is checked. The value df;, is replaced bydsp, if  possesses the same properties as the cumulative distribution
this condition is fulfilled to the given accuraey, which is function used in probability theory. Thus a desired value of
stored in the CART file. Here the biome-dependent functiopAl can be expressed in the form of a mathematical
m(d,L) is defined by (24) and is found in the CART file. Theexpectation, hence its simplicity and the ability to account for
parameterdNsy 1, Lapio, @nddap, are archived for each biome uncertainties in input information.
type. Only thosep,, which pass condition (6) are subject to 2. Definition of the solution of the inverse problem does
the second step, which is the test of condition (7). Thisot depend on a particular canopy radiation model.
comparison test is performed in a similar manner. 3. The contents of the CART file are precisely defined. Its
Equations (36) and (52) are used to evaluate the BHR aeléments are components of various forms of the energy
HDRF for givenp,. The biome-dependent coefficientgs, conservation law. They are determined from general
andw®, defined by (42) and (43), respectively, are elements pfoperties of radiative transfer and are independent of the
the CART file. The canopy reflectance?”‘bs,\ andrg, are models used to generate the CART.

2
dA,bio -

N sol1

evaluated from (45) and (46). The variabtgg™, apEy, tq,, 4. The parameter distribution function is composed using
and a,, depend on the spectral leaf albedo and can leéements of the CART file, and so the LAl retrieval algorithm
expressed as (section 8, (47) and (48)) does not depend on a particular canopy radiation model.
. 5. The precise definition of the CART file allows the
tEemqsl =t Q) 1- W ptpggir hem (@) formulation of requirements of the canopy radiation models
sA ir,A 0 bsdir

1= w(A)pt psgir used to generate the CART file.

« 6. Simple relationships between spectral properties of
1-w ptpggit hem

+[1— T air A (QO)] — hee (@), phytoelements and canopy absorptance and transmittance

1= w(A)Pt psgir allow us to establish a simple relationship between retrieved

) LAl and FPAR. These relationships are also derived from the

t o= 1-wpty t9(w") energy conservation law and do not depend on a particular

@ 1-w(A)pt, ' canopy radiation model.
7. The simplicity of the LAI/FPAR retrieval algorithm,

hem _ 1-w'pa 1-w(A) however, was reached at the expense of some complications

b T —w(pa 1-cw' in generating the CART file. Some of its elements are

solutions of various ill-posed problems, and so a special

. hem v f—f, hem ¥
x{fd”"‘ (Qo)apsgir (@ ) + [1 Fair (QO)]abSd'f (w )}’ technique was developed to generate the CART file.

_l-wpa 1_w(/\)aq(w*).

S I—w)pa 1-w Appendix

aq,,\

The measure theory is used to establish a relationship

Herefq , is the ratio of direct radiation to the total (direct ang\oveen measured reflectances and canopy structure. This
diffuse) radiation incident on the canopy; the coefficients
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technique is a .powerfgl way to relate values one quantifiesWA(oA; Poio) ={ PO Pyio |Ahem(QO, p)O,}OB(Pyo) -
(e.g., probabilities, weights, mass, volume, area, etc.) to the

information one measures. Directly or indirectly, most modern W, (O, ; Byio) ={ pURyio [T(Qq, p) U0, } O B(Pyio)
approaches use measures. Therefore we use this technique to

make the algorithm flexible. Unfortunately, some basi¥/hereOa ando; (see (4)) are elements fraB(D,) andB(D,),

knowledge of the mathematical foundation of the moderigSPectively. As mentioned abov&{L), Wa(OaPuo), and
probability theory Kolmogoroy 1950] is required to follow W{(Or:Puio) are events in probability theory. For examii,)
sections 2 and 3. In our paper, we follow the original mond® the event

graph ofKolmogorov[1950]. This theory can also be found in "value of LAl is less theh" , (A1)
the work of Eisen 1969]. Standard measure theory is

included mostly in programs for professional mathematiciar{ge SubseW,(Ox;
only. Therefore nonmathematical communities may not Benodeled BHRs belong to the intervals
familiar with this theory. ChaptdiX, sections 2-4 (pp. 337-
348) of Barnsley's[1993] monograph is a good introduction

to measures. Both measure and probability theories start with o ] ]
a description of spaceBémsley sectionll.1, definition 1.1]. Where A] (Qo) 1S the. retngved BHR at 'V”SR spectral band
We introduce the following spaces: A, and & is uncertainty in the BHR retrieval. The set

1. Space of canopy realizationB. This space is Qa(L,04;Ppio) introduced in section 2 is the product of the

represented by canopy structural types of global vegetati§eNS L) and Wa(OaPuo); that is, Qa(L,OaiPuio)=
(biome), each representing patterns of the architecture of F) 0 Wa(On;Poio)-

individual tree and the entire canopy, and spectral properties Th? steps .done. above are standard preparatory work to
of phytoelementsy at MISR bands, i=1,2,3,4 (section 5.5). establish relationships between LAl and canopy reflectances

Each biome is characterized by ground cagemean LAI of under minimum conceptual assumptions. This technique leads
an individual treel, and pattern of effective ground 0 & diversity of relationships. For example, the cuiyg),[
reflectances @, ps s, P2) in the MISR bands. A detailed A (0. P) ], where parametep runs over the sePy,
parameterization of this space is discussedbyazikhin et ©Outlines biome-specific relationships between LAl and canopy
al. [this issue]. The element of this space is the vector reflectance AFM(Qo) . This example demonstrates a widely
p=(bi0, Wy (y, s, Wy, P1, Por Par P L, G). Here bio can take used technique to derive and quantify various relationships,
six values only; one pattermy s, o, ws) of the spectral leaf €9 One plots all points(p), A™"'(€o,p)] on LAI-BHR,
albedo per biome. Ground cover, the LAl of individuaP!ane, and then evaluates a mean curve together with its
vegetation, and effective ground reflectance can vary withf{SPersion. This mean curve quantifies a desired LAI-BHR

given biome-dependent ranges. Thus the space of cand gationship, while the dispersion characterizes its reliability.
realization is supposed to represent patterns of existifgf!® c@n also, for example, rearrange elements in th@gets

vegetation canopies. The spaeeis the sum of six biome- D,, andD, by ranking them in increasing order of the function
dependent subs&,, bio=1, 2, ... , 6. The element B, is [(p). This involves a reparameterization of these sets in terms
the vector b1, P P Pa L, g). The probability theory treats of LAl values .(it will be recalled that LAIKp)) and separates
the spaceP andP,, as sets of elementary events. elements (which are subsets!) fr@(Py;), B(D»), andB(D;)

2. Spaces of observations of canopy reflectaizeand of different "sizes" with respect to the values of LAI; and this

D, are introduced in (3). The probability theory treats thi§ the mathematical basis for quantifying the "size" of these
space®D, andD, as sets of elementary events. elements with respect to the LAI valggs in terms of "weight,"
The measure theory requires the introduction of a sigm@f "Mass,” or "volume,” or "probability,” etc. A successful
field [Barnsley sectionIX.2, definitions 2.1 and 2.3]. The W&y to assign different nonnegative real values to the
Borel fieldsB(Pyy,), B(DA), andB(D,) associated witlPyo, Da, elements of different "SIZES". was realized in the notlgn of
andD,, respectively, are taken as the required sigma-fields jf1easure” and Lebesgue's integrakljesgue 1902]. This
our paper Barnsley sectioniX.2, definition 2.5]. Elements of concept underlies modern probability theory and integration
B(Pyo), B(DA), and B(D,) are defined to be events intechmq.ug.s. .
probability theory. Note tha(Pyy,), B(D,), andB(D,) are sets Definition of a measure can be found in the work of

whose elements are subset®gf, D,, andD,, respectively. [Barnsley sectionIX.3, definition 3.1, p. 341]. The theory
In order to relate LAl to the spac&;,, Da andD,, we defines the probability of an event as a normalized measure;

consider the functions(p)= gL, T (Qo,p), and AhentQO D) that is, it includes one more condition in the definition of the
which to every elemer from P, set in correspondence, ameasure, namely(X)=1. In our paper, we weighted LAl
value of LAI, a BRF-matrix (1), and the BHR-vector (2).values with rgspgct to.canopy refle(?tances by (8), (9) and (10).
These functions are supposed to be measured with respedfi@§vever, to justify this approach, it must be shown that the

P.io) is the event,

[AE™(Q0) - £, AP™(Q0) +£],=1,2,34",  (A2)

the Borel fieldsB(Py); that is, limits in (9).alnq (10) do not depend on the p{.artic.ular chpice
of the subdivision (8). The proof of this assertion is provided
S(L) ={ PO Py [1(p) <L} UB(Pyjo) . by a theorem Barnsley sectionlX.4, theorem 4.3, p. 347].
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Really, letA be an arbitrary element from the sigma-field We also note one interesting property of the functions
B(Puio). We consider the characteristic functig(p) whose  Fapio andF; apio- It follows from the definition ofay, that if
values is 1, ipJA, and zero otherwise. The subdivision (8) ighere exists only one parameteflP,, for which modeled
a partition ofPy, [Barnsley sectionlX.4, definition 4.3]. We BHRs belong to the intervals (A2), then the functigy

consider a functiory ¥ (p MXefined as coincides with the Heaviside function; that is,
N N . *
B, if L<L,
XAP) =) XaPXR,, (=Y Xang,, (P) . (A3) FAm@J=a .
= ’ = ’ otherwise

wherep, Py, is a point from the sé;,,. Let us introduce a Where L'=l(p). It means that the solution of the inverse
measure of the sétas the mean of (p Ppver partition (8) problem defined by (11) coincides with this unique solution

and pointsy; that is, L'=I(p). The same is true if there are many parametgr,,
N for which modeled BHRs belong to the intervals (A2), while
Npap— 1 N valuesl(p) slightly vary about a valuk’. It means that if the
u [A]—N Xa (Pg) - . . ; . o
= inverse problem has a unique solution, the algorithm specifies

it. If not, the algorithm provides the most probable solution.
The valueiM[A] satisfies the definition of measuBdrnsley
sectionlX.3, definition 3.1, p. 341]. Moreover, it follows from Acknowledgments. This work was made under contract with
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